IBM reveals five innovations that will help change our lives within five years 2017-01-19 11:31:59 / CONFERENCES

IBM  unveiled the annual “IBM 5 in 5”  – a list of ground-breaking scientific innovations with the potential to change the way people work, live, and interact during the next five years.

 

With AI, our words will open a window into our mental health

 

Brain disorders, including developmental, psychiatric and neurodegenerative diseases, represent an enormous disease burden, in terms of human suffering and economic cost.1 For example, today, one in five adults in the U.S. experiences a mental health condition such as depression, bipolar disease or schizophrenia, and roughly half of individuals with severe psychiatric disorders receive no treatment. The global cost of mental health conditions is projected to surge to US$6 trillion by 2030.

 

Hyperimaging and AI will give us superhero vision

 

More than 99.9 percent of the electromagnetic spectrum cannot be observed by the naked eye. Over the last 100 years, scientists have built instruments that can emit and sense energy at different wavelengths. Today, we rely on some of these to take medical images of our body, see the cavity inside our tooth, check our bags at the airport, or land a plane in fog. However, these instruments are incredibly specialized and expensive and only see across specific portions of the electromagnetic spectrum.

 

In five years, new imaging devices using hyperimaging technology and AI will help us see broadly beyond the domain of visible light by combining multiple bands of the electromagnetic spectrum to reveal valuable insights or potential dangers that would otherwise be unknown or hidden from view. Most importantly, these devices will be portable, affordable and accessible, so superhero vision can be part of our everyday experiences.

 

Macroscopes will help us understand Earth's complexity in infinite detail

 

Today, the physical world only gives us a glimpse into our interconnected and complex ecosystem. We collect exabytes of data – but most of it is unorganized. In fact, an estimated 80 percent of a data scientist’s time is spent scrubbing data instead of analyzing and understanding what that data is trying to tell us.

 

n five years, we will use machine learning algorithms and software to help us organize the information about the physical world to help bring the vast and complex data gathered by billions of devices within the range of our vision and understanding. We call this a "macroscope" – but unlike the microscope to see the very small, or the telescope that can see far away, it is a system of software and algorithms to bring all of Earth's complex data together to analyze it for meaning.

 

Medical labs “on a chip” will serve as health detectives for tracing disease at the nanoscale

 

Early detection of disease is crucial. In most cases, the earlier the disease is diagnosed, the more likely it is to be cured or well controlled. However, diseases like cancer can be hard to detect – hiding in our bodies before symptoms appear.

 

In the next five years, new medical labs “on a chip” will serve as nanotechnology health detectives – tracing invisible clues in our bodily fluids and letting us know immediately if we have reason to see a doctor. The goal is to shrink down to a single silicon chip all of the processes necessary to analyze a disease that would normally be carried out in a full-scale biochemistry lab.

 

The lab-on-a-chip technology could ultimately be packaged in a convenient handheld device to allow people to quickly and regularly measure the presence of biomarkers found in small amounts of bodily fluids, sending this information securely streaming into the cloud from the convenience of their home. There it could be combined with real-time health data from other IoT-enabled devices, like sleep monitors and smart watches, and analyzed by AI systems for insights. When taken together, this data set will give us an in depth view of our health and alert us to the first signs of trouble, helping to stop disease before it progresses.

 

Smart sensors will detect environmental pollution at the speed of light

 

Most pollutants are invisible to the human eye, until their effects make them impossible to ignore. Methane, for example, is the primary component of natural gas, commonly considered a clean energy source. But if methane leaks into the air before being used, it can warm the Earth’s atmosphere. 

 

In the United States, emissions from oil and gas systems are the largest industrial source of methane gas in the atmosphere.  The U.S. Environmental Protection Agency (EPA) estimates that more than nine million metric tons of methane leaked from natural gas systems in 2014. Measured as CO2-equivalent over 100 years, that’s more greenhouse gases than were emitted by all U.S. iron and steel, cement and aluminum manufacturing facilities combined.

In five years, new, affordable sensing technologies deployed near natural gas extraction wells, around storage facilities, and along distribution pipelines will enable the industry to pinpoint invisible leaks in real-time. Networks of IoT sensors wirelessly connected to the cloud will provide continuous monitoring of the vast natural gas infrastructure, allowing leaks to be found in a matter of minutes instead of weeks, reducing pollution and waste and the likelihood of catastrophic events.

 

dailytechinfo.org

    Copyright © İnformasiya Texnologiyaları İnstitutu, 2024